MATHEMATICS

1. In a non-leap year, the probability of having 53 Tuesdays or 53 Wednesdays is
(A) $\frac{4}{7}$
(B) $\frac{3}{7}$
(C) $\frac{2}{7}$
(D) $\frac{1}{7}$
2. If A and B are two sets such that $n(A-B)=24, n(B-A)=19$ and $n(A \cap B)=11$, then $n(\mathrm{~A})$ is
(A) 35
(B) 43
(C) 30
(D) 13
3. The Cartesian equation of the plane perpendicular to the line $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{2}$ and passing through the origin is
(A) $2 x-y+2 z-7=0$
(B) $2 x+y+2 z=0$
(C) $2 x-y+2 z=0$
(D) $2 x-y-z=0$
4. The area of the region bounded by the curve $y=\sin x$ between the coordinates $x=0, x=\frac{\pi}{2}$ and $y=0$ is
(A) 2 sq.unit
(B) 4 sq.unit
(C) 3 sq.unit
(D) 1 sq.unit
5. From the permutations made out of the letters of the word 'TRIANGLE', how many of them will begin with T and end with E ?
(A) 720
(B) 1350
(C) 2880
(D) 5400
6. If $t\left(1+x^{2}\right)=x$ and $x^{2}+t^{2}=y$, then at $x=2$, the value of $\frac{d y}{d x}$ is
(A) $\frac{488}{125}$
(B) $\frac{88}{125}$
(C) $\frac{101}{125}$
(D) None of these
7. If $\sin ^{2} \theta=\frac{1}{4}$, then θ is equal to
(A) $n \pi \pm \frac{\pi}{6}$
(B) $n \pi \pm \frac{\pi}{3}$
(C) $n \pi \pm \frac{\pi}{4}$
(D) $n \pi$
8. If n is any positive integer, then the value of $\frac{i^{4 n+1}-i^{4 n-1}}{2}$ is equal to
(A) 1
(B) -1
(C) i
(D) $-i$
9. From mean value theorem, $f(b)-f(a)=(b-a) f^{\prime}\left(x_{1}\right), a<x_{1}<b$; if $f(x)=1 / x$, then x_{1} is equal to
(A) $\sqrt{a b}$
(B) $\frac{a+b}{2}$
(C) $\frac{2 a b}{a+b}$
(D) $\frac{b-a}{b+a}$
10. A die is rolled. If the outcome is an odd number, then the probabilty of getting a prime is
(A) $\frac{3}{4}$
(B) $\frac{2}{3}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
11. If $f(x)=\frac{1}{1-x}$, then $f[f\{f(x)\}]$ is equal to
(A) $\frac{x-1}{x}$
(B) $f(x)$
(C) x
(D) $-f(x)$
12. If ${ }^{n} \mathrm{P}_{\mathrm{r}}=60$ and ${ }^{n} C_{\mathrm{r}}=10$, then the value of r is
(A) 6
(B) 5
(C) 4
(D) 3
13. If A and B are any 2×2 matrices, then $|A+B|=0$ implies
(A) $|A|+|B|=0$
(B) $|A|=0$ or $|B|=0$
(C) $|A|=|B|=0$
(D) None of these
14. The number of ways in which a team of 11 players can be selected from 22 players, when two particular players are always selected and four particular players are always excluded
(A) ${ }^{22} C_{11-2}$
(B) ${ }^{16} C_{9}$
(C) ${ }^{16} C_{11}$
(D) ${ }^{20} C_{8}$
15. The solution of $\left(2 x-10 y^{3}\right) \frac{d x}{d y}+y=0$ is
(A) $x y^{2}=2 y^{5}+\mathrm{C}$
(B) $x+y=\mathrm{C} e^{2 x}$
(C) $y^{2}=2 x^{3}+\mathrm{C}$
(D) $x\left(y^{2}+x y\right)=0$
16. A and B appear for an interview for two vacancies in the same post. The probability of A's selection is $\frac{1}{6}$ and that of B's selection is $\frac{1}{4}$. The probability that none is selected is
(A) $\frac{2}{5}$
(B) $\frac{3}{5}$
(C) $\frac{5}{8}$
(D) $\frac{1}{7}$
17. Let $\frac{d}{d x} F(x)=\frac{e^{\sin x}}{x}, x>0$. If $\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} d x=F(k)-F(1)$, then one possible value of k is
(A) 15
(B) 16
(C) 63
(D) 64
18. The solution of $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$ is
(A) $\frac{\sqrt{2}+i \sqrt{34}}{2 \sqrt{3}}, \frac{\sqrt{2}-i \sqrt{34}}{2 \sqrt{3}}$
(B) $\frac{-\sqrt{2}+i \sqrt{34}}{2 \sqrt{3}}, \frac{-\sqrt{2}-i \sqrt{34}}{2 \sqrt{3}}$
(C) $\frac{2+i \sqrt{34}}{2 \sqrt{3}}, \frac{2-i \sqrt{34}}{2 \sqrt{3}}$
(D) $\frac{2+i \sqrt{34}}{\sqrt{3}}, \frac{2-i \sqrt{34}}{\sqrt{3}}$
19. In a $\triangle \mathrm{ABC}$, if $\mathrm{a}=2, \mathrm{~b}=3$ and $\sin \mathrm{A}=\frac{2}{3}$, then $\angle \mathrm{B}$ is equal to
(A) 45°
(B) 60°
(C) 90°
(D) 120°
20. If $f(x)=\left\{\begin{array}{l}a x^{2}+b, b \neq 0, x \leq 1 \\ b x^{2}+a x+c, \text { if } x>1\end{array}\right.$ then $f(x)$ is continuous and differentiable at $x=1$ if
(A) $c=0, a=2 b$
(B) $a=c, c \in \mathrm{R}$
(C) $a=b, c=0$
(D) $a=b, c \neq 0$
21. For a 3×3 matrix A, if $|A|=4$, then $|\operatorname{adj} A|$ equals
(A) -4
(B) 4
(C) 16
(D) 64
22. The equation of the straight line passing through the point $(1,2)$ and perpendicular to the line $x+y+1=0$ is
(A) $y-x+1=0$
(B) $y-x-1=0$
(C) $y-x+2=0$
(D) $y-x-2=0$
23. If A is a square matrix of order n and λ is a scalar, then $|\lambda A|$ is
(A) $\quad \lambda|A|$
(B) $|\lambda||A|$
(C) $\lambda^{n}|A|$
(D) None of these
24. Let A be the set of all real numbers and let R be a relation in A defined by $\mathrm{R}=\left\{(a, b): a \leq b^{2}\right\}$, then R is
(A) Reflexive
(B) Symmetric
(C) Transitive
(D) Not reflexive, symmetric and transitive
25. The corner points of the feasible region determined by the system of linear constraints are $(0,10),(5,5),(15,15),(0,20)$. Let $Z=p x+q y$, where $p, q>0$. Condition on p and q so that the maximum of Z occurs at both the points $(15,15)$ and $(0,20)$ is
(A) $p=q$
(B) $p=2 q$
(C) $q=2 p$
(D) $q=3 p$
26. If ${ }^{n} C_{14}={ }^{n} C_{16}$, the value of n is
(A) 32
(B) 30
(C) 14
(D) 12
27. If $y=\left(x^{x}\right)^{x}$, then $\frac{d y}{d x}$ is equal to
(A) $x y(1+\log x)$
(B) $x y(1+2 \log x)$
(C) $\frac{x}{y}(1+\log x)$
(D) $\frac{x}{y}(1+2 \log x)$
28. The locus of a point which moves so that its distance from a fixed point, called focus, bears a constant ratio, which is less than unity, to its distance from a fixed line, called the directrix is called
(A) a parabola
(B) a hyperbola
(C) an ellipse
(D) a circle
29. The tangent to a given curve is perpendicular to x-axis if
(A) $\frac{d y}{d x}=0$
(B) $\frac{d y}{d x}=1$
(C) $\frac{d x}{d y}=0$
(D) $\frac{d x}{d y}=1$
30. The expression $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}$ can be reduced to
(A) $\cot 3 x$
(B) $\tan 4 x$
(C) $\cot 5 x$
(D) None of these
31. x^{x} has a stationary point at
(A) $x=e$
(B) $x=1 / e$
(C) $x=1$
(D) $x=\sqrt{e}$
32. Consider the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$

Statement-1: The parametric equations of the line of intersection of the given planes are $x=3+14 t, y=1+2 t, z=15 t$, where t being the parameter.
Statement-2: The vector $144^{\dot{L}}+2 \dot{j}^{\dot{j}}+15 k^{\text {d }}$ is parallel to the line of intersection of given planes.
(A) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
(C) Statement-1 is true, Statement-2 is false.
(D) Statement-1 is false, Statement-2 is true.
33. The radius of a circular soap bubble is increasing at the rate of $0.2 \mathrm{~cm} / \mathrm{s}$. Then the rate of increase in its surface area when the radius is 7 cm , will be
(A) $35.2 \mathrm{~cm}^{2} / \mathrm{s}$
(B) $11.2 \mathrm{~cm}^{2} / \mathrm{s}$
(C) $24 \mathrm{~cm}^{2} / \mathrm{s}$
(D) $42.5 \mathrm{~cm}^{2} / \mathrm{s}$
34. The tangent to the curve $y=e^{2 x}$ at the point $(0,1)$ meets the x-axis at
(A) $(0,0)$
(B) $(2,0)$
(C) $(-1 / 2,0)$
(D) None of these
35. The perpendicular bisector of the line segment joining $\mathrm{P}(1,4)$ and $\mathrm{Q}(k, 3)$ has y intercept -4 . Then
(A) $k= \pm 3$
(B) $k= \pm 4$
(C) $k= \pm 5$
(D) $k=5$
36. If A and B are symmetric matrices, then $A B A$ is
(A) symmetric
(B) skew symmetric
(C) diagonal
(D) triangular
37. The following are the marks obtained by 9 students in mathematics test :
$50,69,20,33,53,39,40,65,59$. The mean deviation from the median is
(A) 9
(B) 10.5
(C) 12.67
(D) 14.76
38. The eccentricity of the hyperbola $x^{2}-y^{2}=9$ is
(A) less than 1
(B) 1
(C) $\sqrt{2}$
(D) None of these
39. If $\cot ^{-1}\left(-\frac{1}{5}\right)=\theta$, then $\sin \theta$ is equal to
(A) $\frac{5}{26}$
(B) $\frac{5}{\sqrt{26}}$
(C) $\frac{26}{\sqrt{5}}$
(D) $\frac{25}{5}$
40. Statement-1: The circle $x^{2}+y^{2}-8 x-4 y+16=0$ touches the x-axis at the point $(4,0)$

Statement-2: The circle $\left(x-x_{1}\right)^{2}+(y-r)^{2}=r^{2}$ touches the x-axis at the point $\left(x_{1}, 0\right)$
(A) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
(C) Statement-1 is true, Statement-2 is false.
(D) Statement-1 is false, Statement-2 is true.
41. $\int e^{\mathrm{K} x}\left\{\mathrm{~K} . f(x)+f^{\prime}(x)\right\} d x$ is equal to
(A) $e^{x} \mathrm{~K} f(x)+\mathrm{C}$
(B) $e^{\mathrm{K} x} f(x)+\mathrm{C}$
(C) $e^{\mathrm{K}} x f^{\prime}(x)+\mathrm{C}$
(D) $e^{\mathrm{Kx}} f^{\prime \prime}(x)+\mathrm{C}$
42. If $P(A \cup B)=P(A \cap B)$ for any two events A and B, then
(A) $\quad P(A)=P(B)$
(B) $P(A)>P(B)$
(C) $P(A)<P(B)$
(D) None of these
43. Which of the following does not have a proper subset ?
(A) $\{x: x \in \square\}$
(B) $\{x: x \in \square, 3<x<4\}$
(C) $\{x: x \in \square, 3<x<4\}$
(D) None of these
44. The mean of the numbers $a, b, 8,5,10$ is 6 and variance is 6.80 . Then
(A) $a=3$ and $b=7$
(B) $\quad a=4$ and $b=7$
(C) $\quad a=5$ and $b=3$
(D) $a=3$ and $b=4$
45. The acute angle between the lines $x-2 y+3=0$ and $3 x+y-1=0$ is
(A) $\tan ^{-1}(7)$
(B) $\tan ^{-1}(4)$
(C) $\tan ^{-1}(9)$
(D) $\tan ^{-1}(5)$
46. Statement-1: The probability of drawing either an ace or a king from a pack of 52 playing cards in a single draw is $\frac{1}{13}$.

Statement-2: If A and B are two events, then $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
(A) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
(C) Statement-1 is true, Statement-2 is false.
(D) Statement-1 is false, Statement-2 is true.
47. Let A and B be events such that $P(A)=\frac{1}{3}, P(B)=\frac{1}{4}$ and $P(A \cap B)=\frac{1}{5}$, then $P(\bar{B} / \bar{A})$ is
(A) $\frac{23}{30}$
(B) $\frac{37}{40}$
(C) $\frac{38}{53}$
(D) $\frac{37}{55}$
48. The value of $\int_{-\pi / 2}^{\pi / 2} \sin ^{7} x d x$ is
(A) 1
(B) 0
(C) 7
(D) -1

(A) -120
(B) 120
(C) 118
(D) 122
50. Let $\mathrm{A}=\{10,11,12,14,26\}$ and let $f: \mathrm{A} \rightarrow \mathrm{N}: f(n)=$ highest prime factor of n. The range of f is
(A) $\{3,5,7,11,13\}$
(B) $\{10,12,14,26\}$
(C) $\{11\}$
(D) None of these
51. The area bounded by the curve $y^{2}=9 x$ and the lines $x=1, x=4$ and $y=0$ in the first quadrant is
(A) 7 sq. unit
(B) 14 sq. unit
(C) 28 sq. unit
(D) 25 sq. unit
52. A set is said to be a convex set, if every point on the line segment joining any two points in it lies in it. Which of the following is convex set?
(A) $\left\{(x, y): x^{2}+y^{2} \geq 1\right\}$
(B) $\left\{(x, y): 4 \leq x^{2}+y^{2} \leq 9\right\}$
(C) $\quad\left\{(x, y): 2 x^{2}+3 y^{2} \leq 6\right\}$
(D) None of these
53. Let A and B be the coefficient matrix and constant matrix of a given system of equation. Then the system has infinitely many solutions if
(A) $|A|=0$ and $(\operatorname{adj} A) B=0$
(B) $|A| \neq 0$ and $(\operatorname{adj} A) B=0$
(C) $|A|=0$ and $(\operatorname{adj} A) B \neq 0$
(D) $|A| \neq 0$ and $(\operatorname{adj} A) B \neq 0$
54. If $\stackrel{\rightharpoonup}{a}$ and $\stackrel{\rightharpoonup}{b}$ are unit vectors such that $\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{b}=\cos \theta$, then the value of $|\stackrel{\rightharpoonup}{a}+\stackrel{\rightharpoonup}{b}|$ is
(A) $2 \sin \frac{\theta}{2}$
(B) $2 \sin \theta$
(C) $2 \cos \frac{\theta}{2}$
(D) $2 \cos \theta$
55. If a, b, c are in A.P as well as in G. P then
(A) $a=b \neq c$
(B) $a=b=c$
(C) $a \neq b=c$
(D) $a \neq b \neq c$
56. Let R, S and T be three non-collinear points on the plane with position vectors $\stackrel{\rightharpoonup}{a}, \stackrel{\rightharpoonup}{b}$ and $\stackrel{\stackrel{\rightharpoonup}{c}}{ }$ respectively; and let $\stackrel{\rightharpoonup}{r}$ be the position vector of any point on the plane. Then the equation of the plane passing through R, S and T is
(A) $\left(\begin{array}{l}\stackrel{\rightharpoonup}{r}-\stackrel{\stackrel{\rightharpoonup}{a}}{r}) \cdot\left[\begin{array}{|r}b \\ b\end{array} \stackrel{\stackrel{\rightharpoonup}{c}}{c}\right]=0\end{array}\right.$

(D) $\stackrel{\stackrel{\rightharpoonup}{a} .}{ }[(\stackrel{\stackrel{\rightharpoonup}{b}-\stackrel{\rightharpoonup}{r}) \times(\stackrel{\stackrel{\rightharpoonup}{c}-\stackrel{\rightharpoonup}{r}}{r})]=0}{ }$
57. The value of the integral $\int_{0}^{1} e^{x^{2}} d x$ lies in
(A) less than e and greater than 1
(B) greater than e and less than 1
(C) less than 1 and greater than 0
(D) none of these
58. If $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}=\lim _{x \rightarrow k} \frac{x^{3}-k^{3}}{x^{2}-k^{2}}$, then k is equal to
(A) $\frac{2}{3}$
(B) $\frac{4}{3}$
(C) $\frac{8}{3}$
(D) $\frac{1}{3}$
59. $\frac{d}{d x}\left(\sqrt{e^{\sqrt{x}}}\right)$ is equal to
(A) $\frac{e^{\sqrt{x}}}{4 \sqrt{x}}$
(B) $\frac{e^{\frac{1}{2} \sqrt{x}}}{4 \sqrt{x}}$
(C) $\frac{e^{\frac{1}{4} \sqrt{x}}}{\sqrt{x}}$
(D) $\frac{4 e^{\sqrt{x}}}{\sqrt{x}}$
60. Let $\mathrm{A}=\{1,2,3,4,6\}$ and let $\mathrm{R}=\{(a, b): a, b \in \mathrm{~A}$ and a divides $b\}$. The range of R is
(A) $\{2,4,6\}$
(B) $\{1,3\}$
(C) $\{1,2,3,4,6\}$
(D) $\{1,3,6\}$
61. A function $f(x)=(x-1) e^{x}+1$ for all $x>0$ is
(A) strictly decreasing
(B) strictly increasing
(C) increasing and decreasing
(D) neither increasing nor decreasing

Paragraph for question numbers 62 to 64

Consider the lines $L_{1}: \frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and $L_{2}: \frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}$
62. The lines L_{1} and L_{2} are
(A) Perpendicular
(B) Coplanar
(C) Parallel
(D) None of these
63. The lines L_{1} and L_{2} intersect at the point
(A) $(2,1,-3)$
(B) $(-3,2,1)$
(C) $(1,-3,2)$
(D) $(2,2,2)$
64. Equation of a plane containing L_{1} and L_{2} is
(A) $x+y+z=0$
(B) $3 x-2 y-z=0$
(C) $x-3 y+2 z=0$
(D) there is no plane containing L_{1} and L_{2}
65. In an Arithmetic Progression, if $\mathrm{T}_{a}=b, \mathrm{~T}_{a+b}=0$, then T_{b} is
(A) a
(B) $-a$
(C) $a+b$
(D) $a-b$
66. If the line $\stackrel{\stackrel{\rightharpoonup}{r}}{r}=\stackrel{\stackrel{\rightharpoonup}{a}}{a}+\lambda \stackrel{\stackrel{\rightharpoonup}{m}}{m}$ lies in the plane $\stackrel{\stackrel{\rightharpoonup}{r} . n}{ }=d$, then
(A) $\underset{m \cdot n}{\boldsymbol{u}}=0$ and $\stackrel{\cup \mathbf{u}}{\text { a }} \cdot n=d$
(B) $\quad \underset{m}{u} \cdot n \neq 0$ and $\stackrel{u}{a} \cdot n=0$

(D) $\quad \stackrel{\rightharpoonup}{m} \cdot n \neq 0$ and $\stackrel{\llcorner }{a} \cdot n=d$
67. $\int \frac{\cot x}{\sin ^{1 / 3} x} d x$ is equal to
(A) $-\frac{2}{\sin ^{3} x}+\mathrm{C}$
(B) $\frac{3}{\sin ^{1 / 3} x}+C$
(C) $-\frac{3}{\sqrt[3]{\sin x}}+\mathrm{C}$
(D) None of these
68. If A is an invertible matrix, then $\operatorname{det}\left(A^{-1}\right)$ is equal to
(A) 1
(B) $|A|$
(C) $\frac{1}{|A|}$
(D) -1
69. If $y=\sin ^{n} x \cos n x$, then $\frac{d y}{d x}$ is equal to
(A) $n \sin ^{n-1} x \cos (n+1) x$
(B) $n \sin ^{n-1} x \sin (n+1) x$
(C) $n \sin ^{n-1} x \cos (n-1) x$
(D) $n \sin ^{n-1} x \cos n x$
70. The angle between the line $\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-3}{-2}$ and the plane $x+y+1=0$ is
(A) 30°
(B) 60°
(C) 45°
(D) 120°
71. The value of the expression $\left(\sqrt{3} \sin 75^{\circ}-\cos 75^{\circ}\right)$ is
(A) $2 \sin 15^{\circ}$
(B) $1+\sqrt{3}$
(C) $2 \sin 105^{\circ}$
(D) $\sqrt{2}$
72. The derivation of the function $\cot ^{-1}\left[(\cos 2 x)^{1 / 2}\right]$ at $x=\frac{\pi}{6}$ is
(A) $\left(\frac{2}{3}\right)^{\frac{1}{2}}$
(B) $\left(\frac{1}{3}\right)^{\frac{1}{2}}$
(C) $3^{\frac{1}{2}}$
(D) $6^{\frac{1}{2}}$
73. If $\left|\begin{array}{ccc}p+x & p & x \\ p-x & p & x \\ p-x & p & -x\end{array}\right|=0$, then x is
(A) p
(B) $2 p$
(C) 0
(D) $3 p$
74. If $\int f(x) d x=f(x)$, then
(A) $f(x)=x$
(B) $f(x)=$ constant
(C) $f(x)=2 x+\mathrm{C}$
(D) $f(x)=\mathrm{e}^{x}$
75. The negation of the statement "If I become a Chief Minister, then I will build a Dam" is
(A) I will not become a Chief Minister or I will build a Dam.
(B) I will become a Chief Minister and I will not build a Dam.
(C) Either I will not become a Chief Minister or I will not build a Dam.
(D) Neither I will become a Chief Minister nor I will build a Dam.
76. $\int \frac{2^{x}}{\sqrt{1-4^{x}}} d x$ is equal to
(A) $\log 2 \sin ^{-1}\left(2^{x}\right)+\mathrm{C}$
(B) $\frac{1}{\sin ^{-1} 2^{x}}(\log x)+C$
(C) $\frac{1}{\log 2} \sin ^{-1}\left(2^{x}\right)+\mathrm{C}$
(D) $\frac{1}{\log 2^{x}}\left(\sin ^{-1}\right)+\mathrm{C}$
77. If p, q, r are in A. P , then $p^{\text {th }}, q^{\text {th }}, r^{\text {th }}$ terms are in
(A) A.P
(B) G.P
(C) Reciprocals of these terms are in G.P
(D) None of these
78. $\int e^{-\log x} d x$ is equal to
(A) $-e^{-\log x}+\mathrm{C}$
(B) $-x e^{-\log x}+\mathrm{C}$
(C) $x e^{-\log x}+\mathrm{C}$
(D) $\log |x|+C$
79. If $f(x)=1+x+\frac{x^{2}}{2}+\ldots \ldots+\frac{x^{100}}{100}$, then $f^{\prime}(1)$ is equal to
(A) $\frac{1}{100}$
(B) 100
(C) 0
(D) 1
80. The integrating factor of the differential equation $\sin 2 x \frac{d y}{d x}-y=\tan x$ is
(A) $\sqrt{\sin x}$
(B) $\sec x$
(C) $\tan x$
(D) $\frac{1}{\sqrt{\tan x}}$
81. Consider a binary operation * on N defined by $a * b=a^{3}+b^{3}$, then
(A) * is commutative but not associative
(B) * is associative and commutative
(C) * is associative but not commutative
(D) $*$ is neither commutative nor associative
82. If $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$, then its solution is
(A) $\sin x+\sin y=\mathrm{C}$
(B) $\frac{\sin ^{-1} x}{\sin ^{-1} y}=\mathrm{C}$
(C) $\sin ^{-1} x \cdot \sin ^{-1} y=C$
(D) $\sin ^{-1} x+\sin ^{-1} y=\mathrm{C}$
83. If $\sin \theta+\cos \theta=\sqrt{2} \sin \theta$, then the value of $\sin \theta-\cos \theta$ is
(A) $\sqrt{2} \cos \theta$
(B) $-\sqrt{2} \sin \theta$
(C) $-\sqrt{2} \cos \theta$
(D) $\sqrt{2} \sin \theta$
84. If $\sin x=\frac{\sqrt{5}}{3}$ and $0<x<\frac{\pi}{2}$, then the value of $\cos 2 x$ is
(A) -1
(B) $-\frac{1}{9}$
(C) 2
(D) $\frac{2 \sqrt{5}}{3}$
85. In a binomial distribution, mean and variance are 12 and 3 respectively. Then number of trials is
(A) 16
(B) 15
(C) 12
(D) 10
86. The least positive integral value of m for which $\left(\frac{1+i}{1-i}\right)^{m}=1$ is
(A) 2
(B) 3
(C) 4
(D) 8
87. If $4^{\text {th }}$ term in the expansion of $\left(a x+\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, then the value of a and n are
(A) $\frac{1}{2}, 6$
(B) 1,3
(C) $\frac{1}{2}, 3$
(D) $\frac{1}{2}, \frac{1}{3}$
88. The co-efficient of $x^{8} y^{10}$ in $(x+y)^{18}$ is
(A) 2^{18}
(B) ${ }^{18} \mathrm{P}_{10}$
(C) ${ }^{18} \mathrm{C}_{8}$
(D) ${ }^{18} \mathrm{C}_{7}$

Paragraph for question numbers 89 to 91

Let $P(2,3,-4)$ be a point on space and $\stackrel{u}{b}=2 \dot{i}-\stackrel{\downarrow}{j}+2 k$ be a vector.
89. Vector equation of a plane passing through the point P perpendicular to the vector $\stackrel{\rightharpoonup}{b}$ is
(A) $\quad \stackrel{r}{r} \cdot(2 \cdot \stackrel{\square}{i}-\stackrel{\square}{j}+2 k)=7$
(B) $\quad \stackrel{u}{r}(2 \stackrel{i}{i}-\stackrel{\square}{j}+2 k)=-7$
(C) $\stackrel{\cup}{r} \cdot(2 \cdot \stackrel{\cdot}{i}+3 \cdot \cdot-4 k)=7$
(D) $\quad \stackrel{\bullet}{r} \cdot(2 \cdot \stackrel{i \cdot}{i}+3 \cdot-4 k)=-7$
90. Cartesian equation of the plane π passing through the point with position vector $\stackrel{\rightharpoonup}{b}$ and perpendicular to the vector $\stackrel{山}{O P}$, O being origin is
(A) $2 x-y+2 z+7=0$
(B) $2 x-y+2 z-7=0$
(C) $2 x+3 y-4 z+7=0$
(D) $2 x+3 y-4 z-7=0$
91. The Cartesian equation of the line passing through the point with position vector $\stackrel{\rightharpoonup}{b}$ and parallel to the vector $\stackrel{\sim}{O} \mathrm{O}, \mathrm{O}$ being origin is
(A) $\frac{x-2}{2}=\frac{y-3}{-1}=\frac{z+4}{2}$
(B) $\frac{x-2}{2}=\frac{y+1}{3}=\frac{z-2}{-4}$
(C) $\frac{x}{2}=\frac{y+3}{1}=\frac{z-4}{-2}$
(D) None of these
92. If $\stackrel{\rightharpoonup}{a}$ and $\stackrel{\stackrel{\rightharpoonup}{b}}{ }$ are two unit vectors, then what is the angle between $\stackrel{\stackrel{\rightharpoonup}{a}}{a}$ and $\stackrel{\rightharpoonup}{b}$ for $\sqrt{3} \stackrel{\rightharpoonup}{a}-\stackrel{\rightharpoonup}{b}$ to be a unit vector?
(A) 90°
(B) 60°
(C) 45°
(D) 30°
93. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \ldots \infty}}}$, then $\frac{d y}{d x}$ is equal to
(A) $2 y-1$
(B) $\frac{1}{2 y}$
(C) $-\frac{1}{2 y}$
(D) $\frac{1}{2 y-1}$
94. If $\int x^{6} \sin \left(5 x^{7}\right) d x=\frac{\mathrm{K}}{5} \cos \left(5 x^{7}\right), x \neq 0$, then
(A) $\mathrm{K}=7$
(B) $\mathrm{K}=-7$
(C) $\mathrm{K}=\frac{1}{7}$
(D) $\mathrm{K}=\frac{1}{-7}$
95. If $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}(x \neq 0)$, then $f(x)$ is equal to
(A) x^{2}
(B) $x^{2}-1$
(C) $x^{2}-2$
(D) x
96. A parabolic reflector is 9 cm deep and its diameter is 24 cm . The distance of the focus from the vertex is
(A) 2 cm
(B) 7 cm
(C) 5 cm
(D) 4 cm
97. The differential equation of all parabolas having vertex at the origin and axis along the positive direction of the x-axis is
(A) $y-2 x \frac{d y}{d x}=0$
(B) $y^{2}-2 y \frac{d y}{d x}=0$
(C) $y^{2}-2 x y \frac{d y}{d x}=0$
(D) $y^{2}-2 x^{2} y^{2} \frac{d y}{d x}=0$
98. If A and B are two matrices such that $A+B$ and $A B$ are both defined, then
(A) A and B can be any matrices
(B) A, B are square matrices not necessarily of same order
(C) A, B are square matrices of same order
(D) No. of columns of $A=$ No. of rows of B
99. If $A+B+C=\pi$, then $\sin A+\sin B+\sin C$ is equal to
(A) $4 \cos \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}}{2} \cos \frac{\mathrm{C}}{2}$
(B) $\sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}$
(C) $\frac{1}{4} \sin \frac{\mathrm{~A}}{2} \sin \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}$
(D) $\frac{1}{2} \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
100. The solution set of $|x|<4$ is
(A) $]-4,4[$
(B) $] 0,4[$
(C) $]-4,0[$
(D) $[-4,0[$

